
Formalising mathematics in Lean
(Week 7 - Diamonds)

A GlaMS course

M. Abu Omar, S. Castellan, A. Doña Mateo, & P. Kinnear

a.k.a. The Lean Team

March 19th, 2024

1/28



Learning outcomes

▶ Identifying diamonds (i.e., type mismatch errors)

▶ Resolving diamonds

2/28



Example

▶ example [hE1 : NormedAddCommGroup E]

[hE2 : InnerProductSpace C E] [Ring E] [Algebra C E]

(T : E →l[C] E) [hE5 : FiniteDimensional C E] :

LinearMap.adjoint T = T

▶ The error says that there is an “application type mismatch”. Can we
be more precise to fix this?

@LinearMap.adjoint C E E Complex.instIsROrCComplex hE1
hE1 hE2 hE2 hE5 hE5 T = T

▶▶ No, this still gives the same error. We need to expand the error to
see what’s happening in order to fix it.

3/28



Identifying the cause

From the Infoview:

/- Error: application type mismatch

LinearMap.adjoint T

argument

T

has type

@LinearMap C C _ _ _ E E

NonUnitalNonAssocSemiring.toAddCommMonoid

NonUnitalNonAssocSemiring.toAddCommMonoid Algebra.toModule

Algebra.toModule : Type u_1

but is expected to have type

@LinearMap C C _ _ _ E E AddCommGroup.toAddCommMonoid

AddCommGroup.toAddCommMonoid NormedSpace.toModule

NormedSpace.toModule : Type u_1 -/

4/28



Identifying the cause (2)

▶ What did we notice from the error?
▶ Algebra.toModule is clashing with NormedSpace.toModule
▶ AddCommGroup.toAddCommMonoid is clashing with

NonUnitalNonAssocSemiring.toAddCommMonoid

▶ Let’s look at the second case more closely...

5/28



Identifying the cause (3): looks like a diamond!

E

NACGRing

ACGNUNASemiring

AddCommMonoid

▶ This is why we keep getting an application type mismatch error:
because Lean keeps confusing AddCommMonoid induced by NACG with
that induced by Ring, which are not known to be definitionally equal.

6/28



Attempting to fix the error: the naive approach

✗ Can we specify which instances the linear map should access? So in
the same example, can we write:

example [hE1 : NormedAddCommGroup E] [InnerProductSpace C
E] [Ring E] [Algebra C E] (T : E →l[C] E)

[FiniteDimensional C E] :

LinearMap.adjoint (T : @LinearMap C C E E

(hE1.toAddCommMonoid) (hE1.toAddCommMonoid)

(NormedSpace.toModule) (NormedSpace.toModule)) = T

Nope, we still get a type mismatch error.

✗ Okay, can we fix this by reordering the variables and instances?

example [NormedAddCommGroup E] [InnerProductSpace C E] (T :

E →l[C] E) [Ring E] [Algebra C E] [FiniteDimensional C
E] :

LinearMap.adjoint T = T

Technically, this does fix the error. But, you are guaranteed to run
into more problems later on!

7/28



Fixing the error: the naive approach (2)

▶ Does reordering the variables and instances truly resolve the error?

No.

▶ For example, what if we needed to define a linear map within the
proof?

let f : E →l[C] E := sorry

have : @LinearMap.adjoint C E E _ hE1 hE1 hE2 hE2 hE hE

f = 0 := sorry

We’re back to the same error...

8/28



Fixing the error: the naive approach (3)

▶ One way to fix the above error is by being precise with the function:

let f : @LinearMap C C _ _ (RingHom.id C) E E

(hE1.toAddCommGroup.toAddCommMonoid)

(hE1.toAddCommGroup.toAddCommMonoid)

(NormedSpace.toModule) (NormedSpace.toModule) := sorry

have : LinearMap.adjoint f = 0 := sorry

Not very practical, but it works now.

▶ However, there is one error that we cannot get rid of. In particular,
if we needed to access both the algebra and the inner product space
at the same time:

example [NormedAddCommGroup A] [InnerProductSpace C A]

(T : C →l[C] A) [Ring A] [Algebra C A] :

T = Algebra.linearMap C A

▶ So how do we fix this then?

▶ We need to resolve the diamonds!

9/28



Type inheritance diagrams

▶ Let A, B, and C be types.

▶ If we are given A with the instance B, then a type inheritance
diagram of A is

B

A

▶ If we also have B infers C, then we have the following diagram:

C

B

A

10/28



Diamonds

▶ So what are diamonds?

▶ Say A, B, C, and D are types, then a diamond is when we have the
following type inheritance diagram:

D

B C

A

In other words, a diamond is when we have D being inferred by both
B and C which are inferred by A.

11/28



Diamonds (2)

▶ We call the diamond transparent, and denote it by ♢, when D

inferred by B is definitionally equal to D inferred by C.

In other words, when the type inheritance diagram commutes.

▶ Transparent diamonds can be left alone, they won’t raise any errors.

▶ Non-transparent diamonds, denoted by ♦, are the ones that will
raise errors and are the ones that need to be addressed.

▶ We also say a diamond is resolved when there are no
non-transparent sub-diamonds (i.e., a diamond within a diamond).
In other words, the diamond is resolved when the error is resolved.

12/28



Diamonds (3)

How do we resolve diamonds?

▶ We need to use a new class E = C+ B \ {common traits of C and B}.
Then E infers both B and C. So we get the following type inheritance
diagram:

D

B E C

A

▶ Now D created by B is equal to that created by C, because they are
both created by E.

13/28



Example

▶ Let type A have an instance B = {One A, 3} and C = {One A, 2},
where 2 and 3 here are just properties.

▶ Recall that One is a class with property one : A.

▶ So we have the following type inheritance diagram:

{One A}

B = {One A, 3} C = {One A, 2}

A

▶ Does 1B need to equal 1C?

▶ No.

14/28



Example (2)

▶ One solution is to set constrains on both instances so that you do
necessarily have equality.

In this case you would get,

{One A}

B = {One A, 3} 1B = 1C C = {One A, 2}

A

Here, ⇒ means that it uses B and C .

15/28



Example (3)

▶ The better solution is to simply have

{One A}

{One A, 3} {One A, 2, 3} {One A, 2}

A

16/28



Back to the first example

E

NACGRing

NUNASemiring ♢1 ACG

♦2

AddCommMonoid

▶ In this example, there are technically two sub-diamonds since Ring

implies ACG.

▶ ♢1 is transparent since AddCommMonoid created by NUNASemiring

(created from Ring) is definitionally equal to that created by ACG

(created from Ring).

▶ So it suffices to address the second sub-diamond ♦2.

17/28



Resolving the diamond

▶ Since Ring and NormedAddCommGroup are the ones causing all of this,
let’s define a new class.

▶ In this class structure, we want to define E that combines Ring and
NormedAddCommGroup such that NormedAddCommGroup would depend
on Ring.

▶ Let’s first take a look at how NormedAddCommGroup is defined:

class NormedAddCommGroup (E : Type*) extends Norm E,

AddCommGroup E, MetricSpace E where

dist := fun x y => ∥x - y∥
/-- The distance function is induced by the norm. -/

dist_eq : ∀ x y, dist x y = ∥x - y∥ := by aesop

▶ So we want to have the same class, but with Ring instead of
AddCommGroup. This way NormedAddCommGroup would depend on Ring.

18/28



Resolving the diamond (2)

class NACGoR (E : Type*)

extends Norm E, Ring E, MetricSpace E where

dist := fun x y => ∥x - y∥
/-- The distance function is induced by the norm. -/

dist_eq : ∀ x y, dist x y = ∥x - y∥ := by aesop

▶ With this new class, we get AddCommMonoid via the ring structure,
which is what we wanted.

19/28



Resolving the diamond (3)

We need to also create the instances that our new class induces, in
particular Ring and NormedAddCommGroup.

This allows Lean to instantly see NACGoR as both a Ring and a
NormedAddCommGroup (where NormedAddCommGroup is given by its Ring

structure).

20/28



Resolving the diamond (4)

Our new type inheritance diagram would look like the following.

AddCommMonoid

NUNASemiring ACG

Ring NACGoR NACG

E

21/28



Resolving the diamond (5)

Now let’s try that example again:

example [NACGoR E] [InnerProductSpace C E] [Algebra C E]

[FiniteDimensional C E] (T : E →l[C] E) :

LinearMap.adjoint T = 0

✓ It works!

22/28



Resolving the diamond (6)

▶ We now check that the instance AddCommMonoid created by the ring
structure is definitionally equal to that created by NACG:

example [h : NACGoR E] :

h.toAddCommMonoid =

NormedAddCommGroup.toAddCommGroup.toAddCommMonoid :=

rfl

▶ We also check:

example [NACGoR E] :

(Ring.toAddCommGroup : AddCommGroup A) =

NormedAddCommGroup.toAddCommGroup :=

rfl

▶ Thus we have resolved the first diamond ♢!
▶ But we still have potential issues left to address.

23/28



What now?

▶ What if we wanted to do:

example [NACGoR E] [InnerProductSpace C E] [Algebra C E]

[FiniteDimensional C E] (T : E →l[C] E) (x y : E) :

⟨⟨T (x * y), T x⟩⟩_C
= (LinearMap.adjoint (Algebra.linearMap C E)) x

▶ And we’re back to the type mismatch error... UGH

24/28



Identifying the second error: another ♦

▶ Okay, so what’s happening now?

▶ Module is created by

1. InnerProductSpace and AddCommMonoid

2. Algebra and AddCommMonoid

And they are not definitionally equal.

▶ So we have another non-transparent diamond ♦ to resolve.

▶ Let’s open the documentation of Algebra in Mathlib to see exactly
how Algebra is defined. There’s actually a whole section on
implementation:
Mathlib.Algebra.Algebra.Basic#Implementation-notes.

25/28

https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Algebra/Basic.html#Implementation-notes


Implementation notes in Mathlib.Algebra.Algebra.Basic

▶ Implementation notes:
“There are two ways to talk about an R-algebra A when A is a

semiring:

1. variable [CommSemiring R] [Semiring A]

variable [Algebra R A]

2. variable [CommSemiring R] [Semiring A]

variable [Module R A] [SMulCommClass R A A]

[IsScalarTower R A A]

26/28

https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Algebra/Basic.html#Implementation-notes


Implementation notes in Mathlib.Algebra.Algebra.Basic (2)

▶ This means we can replace [Algebra C E] with
[SMulCommClass C E E] [IsScalarTower C E E], because
[Module C E] is given by the inner product space, which then
resolves our diamond.

▶ Although, this comes with a small caveat:
“Typeclass search does not know that the second approach

implies the first, but this can be shown with:

example {R A : Type*} [CommSemiring R] [Semiring A]

[Module R A] [SMulCommClass R A A] [IsScalarTower R A

A] : Algebra R A :=

Algebra.ofModule smul_mul_assoc mul_smul_comm

– Mathlib.Algebra.Algebra.Basic#Implementation-notes

▶ Let’s attribute the above example as a local instance in our file, so
that the second approach does imply the first.

27/28

https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Algebra/Basic.html#Implementation-notes


Resolving the second diamond

▶ Now we have no errors and unresolved diamonds remaining!

▶ Module created by the algebra is definitionally equal1 to that created
by the inner product space:

example [NACGoR E] [h : InnerProductSpace C E]

[SMulCommClass C E E] [IsScalarTower C E E] :

h.toModule = Algebra.toModule :=

rfl

1In Lean 3, the proof is by ext; refl, which means the diamond would remain
unresolved - this is another example of how Lean 4 is more powerful.

28/28


